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Early Work
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Ã Vision of a restructurable computer system

Ã Pragmatic problem studies predicts gains in computation 

Ã speeds in a variety of computational tasks when executed 

Ã on appropriate problem-oriented configurations of the 

Ã variable structure computer. The economic feasibility of the 

Ã system is based on utilization of essentially the same 

Ã hardware in a variety of special purpose structures. This 

Ã capability is achieved by programmed or physical 

Ã restructuring of a part of the hardware.

Ã G. Estrin, B. Bussel, R. Turn, J Bibb (UCLA 1963)

1. Gerald Estrin Fix-Plus Machine
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Ã Fixed plus Variable structure 
computer
Proposed by G. Estrin in 1959

Consist of three parts
1. A high speed general purpose computer 

(the fix part F). 

2. A variable part (V) consisting of various 
size high speed digital substructures which 
can be reorganized in a problem oriented 
special purpose configurations.

3. The supervisory control (SC) coordinates 
operations between the fix module and the 
variable module.

Speed gain over IBM7090 (2.5 to 1000)
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1. Gerald Estrin Fix-Plus Machine
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Ã The Fixed Part (F)
Was initially an IBM 7090, but could be any general purpose computer

Ã The Variable Part (V)
Made upon  a set of problem specific  optimized functional units in the

basic configuration( trigonometric functions, logarithm, exponentials, 

n-th power, roots, complex arithmetic, hyperbolic, matrix operation)

Two types of basic building block

The first basic elementcontains four amplifiers 

and associated input logicfor signal inversion, 

amplification, or high-speed storage

The second basic blockconsists of ten diodes 

and four output driversand is for combinatoric 

application

The basic blocks

1. Gerald Estrin Fix-Plus Machine
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The mother board

The wiring harness

The basic modules can be inserted into any of 36 

positions on a mother board. 

The connection between the modules is done by 

wiring harness

Function Reconfiguration means changing some 

modules

Routing Reconfiguration means changing some 

wiring harness

1. Gerald Estrin Fix-Plus Machine
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Estrin at work. 

Substantial efforts

on Reconfiguration

1. Gerald Estrin Fix-Plus Machine
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Ã Goal

Ã Investigation of a system, which, with no manual or 

Ã mechanical interference, permits the building, changing,

Ã processing and destruction of real (not simulated) digital 

Ã hardware

Franz J. Rammig (University of Dortmund 1977)

The concept resulted in the construction of a 

hardware editor. Useful to observe a circuit under 

test (Hardware Emulation)

1. The Rammig Machine
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Ã Implementation
Outputs of modules connected to 
Selectors and selectors output 
connected to module inputs.

Software controlled modules 
interconnection

Two main problems to solve

Because the circuit is not hard-wired, a 

distortion of the time behaviour is possible

The timing is controlled by the circuit 

instead of being dictated by an observation 

mechanism.

A time-controlling must therefore be 

provided

1. The Rammig Machine
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2. Programmable Logic
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Ã Pre-fabricated building block of many AND/OR gates (or NOR, 
NAND)

Ã "Personalized" by making or breaking connections among the 
gates

Programmable Array Block Diagram for Sum of Products Form

Inputs 

Dense array of 
AND gates Product  

terms 

Dense array of 
OR gates 

Outputs

2.1 PALs and PLAs
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Example: Equations

Personality Matrix

1 = asserted in term
0 = negated in term
- = does not participate

1 = term connected to output
0 = no connection to output

Input Side:

Output Side:

Reuse 
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t erms 
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B C 
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A 

F0 = A  + B C
F1 = A C  +  A B
F2 = B C  +  A B
F3 = B C  +  A

2.1 PALs and PLAs
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Example Continued - Unprogrammed device

All possible connections are available
before programming

A B C

F0 F1 F2 F3

2.1 PALs and PLAs
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Example Continued -
Programmed part Unwanted connections are "blown"

Note: some array structures
work by making connections

rather than breaking them

A B C

F0 F1 F2 F3

AB

BC

AC

BC

A

2.1 PALs and PLAs
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Alternative representation for 
high fan-in structures

Short-hand notation
so we don't have to
draw all the wires!

X at junction indicates
a connection 

Notation for implementing

F0 = A B  +  A B

F1 = C D  +  C D

A   B   C   D

AB+AB CD+CD

AB

CD

CD

AB

Unprogrammed device

Programmed device

2.1 PALs and PLAs
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Design Example

F1 = A B C

F2 = A + B + C

F3 = A B C

F4 = A + B + C

F5 = A ÄB ÄC

F6 = A ÄB ÄC

Multiple functions of A, B, C

ABC

A

B

C

A

B

C

ABC

ABC

ABC

ABC

ABC

ABC

ABC

F1 F2 F3 F4 F5 F6

A B C

2.1 PALs and PLAs
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What is difference between Programmable Array Logic (PAL) and
Programmable Logic Array (PLA)?

PAL : AND array is programmable, OR array is fixed at fabrication

A given column of the OR array
has access to only a subset of

the possible product terms

PLA: Both AND and OR arrays are programmable

2.1 PALs and PLAs
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Design Example: BCD to Gray Code Converter

Truth Table
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Minimized Functions:

A 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

B 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

C 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

D 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

W 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
X 
X 
X 
X 
X 
X 

X 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
X 
X 
X 
X 
X 
X 

Y 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
X 
X 
X 
X 
X 
X 

Z 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
X 
X 
X 
X 
X 
X 

AB 

CD 00 01 11 10 

00 

01 

11 

10 

D 

B 

C 

A 

0 0 X 1 

0 1 X 1 

0 1 X X 

0 1 X X 
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K-map for XX 

AB 

CD 00 01 11 10 

00 

01 

11 

10 

D 

B 

C 

A 

0 1 X 0 

0 1 X 0 

1 1 X X 

1 1 X X 

K-map for Y 

AB 

CD 00 01 11 10 

00 

01 

11 

10 

D 

B 

C 

A 

0 0 X 1 

1 0 X 0 

0 1 X X 

1 0 X X 

K-map for Z 

W = A + B D + B C
X = B C
Y = B + C
Z = A B C D + B C D + A D + B C D

2.1 PALs and PLAs
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Programmed PAL:

4 product terms per each OR gate

Minimized Functions:

W = A + B D + B C
X = B C
Y = B + C
Z = A B C D + B C D + A D + B C D

A B C D

A   B    C   D

A

BD

BC

0

0

0

0

B

C

0

0

BC

BCD

AD

BCD

W     X    Y     Z

2.1 PALs and PLAs
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ÃComplex PLDs (CPLD) typically combine PAL 
combinational logic with Flip Flops

o Organized into logic blocks connected in an interconnect matrix

o Combinational or registered output

ÃUsually enough logic for simple counters, state machines, 

decoders, etc.

ÃCPLDs logic is not enough for complex operation

ÃFPGAs have much more logic than CPLDs

Ãe.g. Xilinx Coolrunner II, etc.

2.2 Complex Programmable Logic Devices
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2.2 Complex Programmable Logic Devices
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Ã Introduced in 1985 by Xilinx

Ã Roughly seen, an FPGA consist of:
A set of programmable macro cells

A programmable interconnection network

Programmable input/outputs

Subparts of a (complex) function are implemented 

in macro cells which are then connected to build 

the complete function

The IO can be programmed to drive the macro 

cell's inputs or to be driven by the macro cell's 

outputs

Unlike traditional application-specific integrated 

circuit (ASIC), function is specified by the user 

after the device is manufactured

Physical structure and programming method is 

vendor dependant

2.3 Field Programmable Gate Arrays (FPGAs)
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Ã Typical organization 

1. Symmetrical Array

2 D array of processing elements 

(PE) embedded in an interconnection 

network

Interconnection points at the 

horizontal-vertical  intersection

2. Row based

Rows of Processing elements

Horizontal routing via horizontal 

channels

Channels divided in segments

Vertical connections via dedicated 

vertical tracks (not on the graphic)

2.3 FPGA Structure

Symetrical array

Row-based
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Ã Typical organization (cont) 

3. Sea of gates

2 D array of processing elements

No space left aside the PEs for 

routing

Connection is done on a separate 

layer on top of the cells

4. Hierarchical

Hierarchically placed Macro cells

Low-level macro cells are grouped 

to build the higher-level's PEs 

2.3 FPGA Structure

Sea of gates

Hierarchical
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Ã SRAM (LUT-based)

An SRAM is used to store all possible 

values of a function

Value of a function for a given input is 

retrieved using the inputs as SRAM-

Address

SRAM implementing a function is 

called a look-up table (LUT)

A new function is implemented by 

writing new values into the LUT

Ễ SRAM-based FPGA can therefore be 

reprogrammed (configured) on the fly

Ễ Since a LUT is volatile, a LUT 

configuration is lost when switching 

off the system

2.3 FPGA Programming Technologies
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Ã Anti-fuse
An anti-fused normally presents a high-

impedance state

can be ñfusedò into a low-impedance state 

when programmed by a high voltage.

The anti-fuse used in each of FPGAs from 

different company differs in construction.

Advantages: 

Ễ small area, 

Ễ low resistance and parasitic capacitance 

than transistors 

Ễ reduce delays in the routing.

Drawback: No reprogrammation possible

2.3 FPGA Programming Technologies
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Ã Poly-diffusion Anti-fuse: ACTEL 
PLICE

programmable low-impedance circuit element

Poly-silicon terminal

Oxide-Nitride-Oxide dielectric

Melting the dielectric establish connection

Ã Metal Anti-fuse: Q-Logic Vialink
2 Metal terminal layers (Titanium-Tungsten)

Programming points isolated by amorphous 

Silicon film

2.3 FPGA Programming Technologies
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Ã EEPROM (Flash)
The same technology as that used in

EPROM and EEPROM memories. 

Advantages:

EPROMs require re-programmable 

but do not require external storage. 

EEPROM can be re-programmed in-

circuit.

Drawbacks: 

EPROM's resistors consume static 

power. 

EEPROM requires more chip area 

and multiple voltage sources.

2.3 FPGA Programming Technologies
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LUT
LUT are used as function generators in 
SRAM-based FPGA

A k-inputs LUT can implement up to 2 k

different functions

A k-input LUT has  2 k SRAM locations

A function is implemented by writing all 
possible values that the function can take 
in the LUT

The inputs values are used to address 
the LUT and retrieve the value of the 
function corresponding the the input 
values

a XOR b a b

0  0   0

0  1   1

1  0   1

1  1   0

0
1
1
0

a
b a Xor b

LUT

2.3 FPGA Function generators
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a XOR b a b

0  0   0

0  1   1

1  0   1

1  1   0

0
1
1
0

a
b a Xor b

LUT

2.3 FPGA Function generators

0 1 1 0

Decoder

SRAM 

a

b

A Xor b
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LUT Example: Implement the 
function 

using:

2-input LUTs

3-input LUTs

4-input LUTs

AF = ABD + BC BCD +

A
B

D
B

C
D

A

B

C

F

A
B
D

B
C
D

A
B
C

C
D

A
BF F

2.3 FPGA Function generators
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Multiplexers (MUX)
A 2 kx1 MUX can implement up to 2 k

different functions

A function is implemented by writing all 

possible values that the function can take 

as constant at the MUX-Inputs

The selector-values are used to pass the 

corresponding input to the MUX output 

Complex function can be decomposed and 

implement using many MUXes using the 

Shannon expansion theorem

Y 
4 x 1 
MUX 

s0s1

C0

C1

C2

C3

0

0

0

1

Y s1 s0

0  0   C0

0  1   C1

1  0   C2

1  1   C3

0

0

0

1

=AND

2.3 FPGA Function generators
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Row-based FPGA

Modules rows separated by 

routing channels

MUX-based macro-cells

C-Module

4:1 MUX + 1 OR + 1 AND

S-Module

4:1 MUX + 1 OR + 1 AND

1 Flip Flop

IO placed aside the device

2.3 The Actel ACT3 Family (row-based)
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Channels are composed of several 

segmented routing tracks

Minimum length = module pair width

Maximum length = row width

Long segment if segment width > 3

Connections are anti-fuse based

Horizontal-to-vertical (XF)

Horizontal-to-horizontal (HF)

Vetical-to-vertical (VF)

Fast vertical connection (FF)

Tracks for module inputs are segmented by 

pass transistor (inactive during normal 

operation)

Vertical inputs span the channels above and 

below

2.3 The Actel ACT3 Family (row-based)
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1. Module outputs have dedicated 
channels which extend vertically two 
channels above and two channels 
below, except at the bottom and the 
top

2.3 The Actel ACT3 Family (row-based)
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Symmetrical-array Based FPGA

Macro cells are configurable 

logic block (CLBs), placed on 

line column intersection.

Additional modules exist:

Block RAM for internal use

Digital clock manager (DCM) for 

user specific clock frequency 

generation)

Embedded multiplier (Virtex II or 

newer Virtex series)

Global clock Multiplexers

Input output block (IOB) for off-chip 

communication 

2.3 The Xilinx Virtex Family (symmetrical array)



û#ü Christophe Bobda©

Macro cells are CLBs. A CLB contains 
4 identical slices on virtexII and newer 
and 2 slices on Virtex and Virtex E

4 slices  split in two columns of 2 slices 
each

1 slice contains:

2 4-inputs LUT

2 FF for storing LUT results

MUX to feed LUT either to a FF or the 

the output

Carry in and carry out help to construct 

fast adder circuits using neighbour 

CLBs

2.3 The Xilinx Virtex Family (symmetrical array)
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A CLBs access the general routing matrix 
via a switch matrix

Fast connection lines are used for local 

connections

A switch matrix connects CLB terminal on 

the routing reource using multiplexers

4 horizontal resource per CLB for on-chip 

tri-state busses

Each CLB have two tri-state driver (TBUF) 

that can drive on chip busses

Each TBUF has its own control pin and its 

own input pin

TBUF are AND-OR based, i.e timing is 

more predictable. 

2.3 The Xilinx Virtex Family (symmetrical array)
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IOB for off-chip communication

Programmability allows the use of an IOB 

by any CLB.

Connection can be input, output or 

bidirectional.

6 IOB latched for double data rate (DDR) 

transmission.

One of the DDR register can be used on 

input, output or tri-state.

DDR accomplished by the two register on 

each path clocked by rising or falling edge 

from different clock nets.

The two Clock signals are generated by 

the DCM.

2.3 The Xilinx Virtex Family (symmetrical array)
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Sea-of-gates style (sea-of-tiles)

Macro cells are EEPROM based 

tiles

Four level of hierarchy routing 

resource.

Local resource connects a tile to 

one of its 8 neighbours

Long-lines resource provides 

routing for long distance and high 

fan-out (spanns 1, 2 or 4 tiles). 

Runs both horizontal and vertical

Very long-line resource spans the 

entire device

Global network (clocks, reset)

Connection via anti-fused

2.3 The Actel ProAsic Family (sea-of-gates)


