
û#ü C. Bobda, C.R.K. Prasad©

Reconfigurable Computing

Dr. Christophe Bobda

CSCE Department

University of Arkansas

û#ü Christophe Bobda©

Chapter 1

Architectures

û#ü Christophe Bobda©

Agenda

1. Early works

2. Programmable devices (PLD)

o PAL /PLAs

o CPLDs

o FPGAs

û#ü Christophe Bobda©

Early Work

û#ü Christophe Bobda©

Ã Vision of a restructurable computer system

Ã Pragmatic problem studies predicts gains in computation

Ã speeds in a variety of computational tasks when executed

Ã on appropriate problem-oriented configurations of the

Ã variable structure computer. The economic feasibility of the

Ã system is based on utilization of essentially the same

Ã hardware in a variety of special purpose structures. This

Ã capability is achieved by programmed or physical

Ã restructuring of a part of the hardware.

Ã G. Estrin, B. Bussel, R. Turn, J Bibb (UCLA 1963)

1. Gerald Estrin Fix-Plus Machine

û#ü Christophe Bobda©

Ã Fixed plus Variable structure
computer
Proposed by G. Estrin in 1959

Consist of three parts
1. A high speed general purpose computer

(the fix part F).

2. A variable part (V) consisting of various
size high speed digital substructures which
can be reorganized in a problem oriented
special purpose configurations.

3. The supervisory control (SC) coordinates
operations between the fix module and the
variable module.

Speed gain over IBM7090 (2.5 to 1000)

Central

Processor

Control

High-Speed

Memory

Control

External

Memories

Control

Supervisory

control

Special purpose

structures

Control

hierarchy

High speed

Memories

Control

Backup

Memories

Control

external

Memories

Control

F

SC

V

1. Gerald Estrin Fix-Plus Machine

û#ü Christophe Bobda©

Ã The Fixed Part (F)
Was initially an IBM 7090, but could be any general purpose computer

Ã The Variable Part (V)
Made upon a set of problem specific optimized functional units in the

basic configuration(trigonometric functions, logarithm, exponentials,

n-th power, roots, complex arithmetic, hyperbolic, matrix operation)

Two types of basic building block

The first basic elementcontains four amplifiers

and associated input logicfor signal inversion,

amplification, or high-speed storage

The second basic blockconsists of ten diodes

and four output driversand is for combinatoric

application

The basic blocks

1. Gerald Estrin Fix-Plus Machine

û#ü Christophe Bobda©

The mother board

The wiring harness

The basic modules can be inserted into any of 36

positions on a mother board.

The connection between the modules is done by

wiring harness

Function Reconfiguration means changing some

modules

Routing Reconfiguration means changing some

wiring harness

1. Gerald Estrin Fix-Plus Machine

û#ü Christophe Bobda©

Estrin at work.

Substantial efforts

on Reconfiguration

1. Gerald Estrin Fix-Plus Machine

û#ü Christophe Bobda©

Ã Goal

Ã Investigation of a system, which, with no manual or

Ã mechanical interference, permits the building, changing,

Ã processing and destruction of real (not simulated) digital

Ã hardware

Franz J. Rammig (University of Dortmund 1977)

The concept resulted in the construction of a

hardware editor. Useful to observe a circuit under

test (Hardware Emulation)

1. The Rammig Machine

û#ü Christophe Bobda©

Ã Implementation
Outputs of modules connected to
Selectors and selectors output
connected to module inputs.

Software controlled modules
interconnection

Two main problems to solve

Because the circuit is not hard-wired, a

distortion of the time behaviour is possible

The timing is controlled by the circuit

instead of being dictated by an observation

mechanism.

A time-controlling must therefore be

provided

1. The Rammig Machine

û#ü Christophe Bobda©

2. Programmable Logic

û#ü Christophe Bobda©

Ã Pre-fabricated building block of many AND/OR gates (or NOR,
NAND)

Ã "Personalized" by making or breaking connections among the
gates

Programmable Array Block Diagram for Sum of Products Form

Inputs

Dense array of
AND gates Product

terms

Dense array of
OR gates

Outputs

2.1 PALs and PLAs

û#ü Christophe Bobda©

Example: Equations

Personality Matrix

1 = asserted in term
0 = negated in term
- = does not participate

1 = term connected to output
0 = no connection to output

Input Side:

Output Side:

Reuse
of

t erms

F 1

1

0

1

0

0

Outputs Inputs Product
t erm A

1

-

1

-

1

B

1

0

-

0

-

C

-

1

0

0

-

F 0

0

0

0

1

1

F 2

1

0

0

1

0

F 3

0

1

0

0

1

A B

B C

A C

B C

A

F0 = A + B C
F1 = A C + A B
F2 = B C + A B
F3 = B C + A

2.1 PALs and PLAs

û#ü Christophe Bobda©

Example Continued - Unprogrammed device

All possible connections are available
before programming

A B C

F0 F1 F2 F3

2.1 PALs and PLAs

û#ü Christophe Bobda©

Example Continued -
Programmed part Unwanted connections are "blown"

Note: some array structures
work by making connections

rather than breaking them

A B C

F0 F1 F2 F3

AB

BC

AC

BC

A

2.1 PALs and PLAs

û#ü Christophe Bobda©

Alternative representation for
high fan-in structures

Short-hand notation
so we don't have to
draw all the wires!

X at junction indicates
a connection

Notation for implementing

F0 = A B + A B

F1 = C D + C D

A B C D

AB+AB CD+CD

AB

CD

CD

AB

Unprogrammed device

Programmed device

2.1 PALs and PLAs

û#ü Christophe Bobda©

Design Example

F1 = A B C

F2 = A + B + C

F3 = A B C

F4 = A + B + C

F5 = A ÄB ÄC

F6 = A ÄB ÄC

Multiple functions of A, B, C

ABC

A

B

C

A

B

C

ABC

ABC

ABC

ABC

ABC

ABC

ABC

F1 F2 F3 F4 F5 F6

A B C

2.1 PALs and PLAs

û#ü Christophe Bobda©

What is difference between Programmable Array Logic (PAL) and
Programmable Logic Array (PLA)?

PAL : AND array is programmable, OR array is fixed at fabrication

A given column of the OR array
has access to only a subset of

the possible product terms

PLA: Both AND and OR arrays are programmable

2.1 PALs and PLAs

û#ü Christophe Bobda©

Design Example: BCD to Gray Code Converter

Truth Table

K-maps

Minimized Functions:

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

W
0
0
0
0
0
1
1
1
1
1
X
X
X
X
X
X

X
0
0
0
0
1
1
0
0
0
0
X
X
X
X
X
X

Y
0
0
1
1
1
1
1
1
0
0
X
X
X
X
X
X

Z
0
1
1
0
0
0
0
1
1
0
X
X
X
X
X
X

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

0 0 X 1

0 1 X 1

0 1 X X

0 1 X X

K-map for W

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

0 1 X 0

0 1 X 0

0 0 X X

0 0 X X

K-map for XX

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

0 1 X 0

0 1 X 0

1 1 X X

1 1 X X

K-map for Y

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

0 0 X 1

1 0 X 0

0 1 X X

1 0 X X

K-map for Z

W = A + B D + B C
X = B C
Y = B + C
Z = A B C D + B C D + A D + B C D

2.1 PALs and PLAs

û#ü Christophe Bobda©

Programmed PAL:

4 product terms per each OR gate

Minimized Functions:

W = A + B D + B C
X = B C
Y = B + C
Z = A B C D + B C D + A D + B C D

A B C D

A B C D

A

BD

BC

0

0

0

0

B

C

0

0

BC

BCD

AD

BCD

W X Y Z

2.1 PALs and PLAs

û#ü Christophe Bobda©

ÃComplex PLDs (CPLD) typically combine PAL
combinational logic with Flip Flops

o Organized into logic blocks connected in an interconnect matrix

o Combinational or registered output

ÃUsually enough logic for simple counters, state machines,

decoders, etc.

ÃCPLDs logic is not enough for complex operation

ÃFPGAs have much more logic than CPLDs

Ãe.g. Xilinx Coolrunner II, etc.

2.2 Complex Programmable Logic Devices

û#ü Christophe Bobda©

2.2 Complex Programmable Logic Devices

û#ü Christophe Bobda©

Ã Introduced in 1985 by Xilinx

Ã Roughly seen, an FPGA consist of:
A set of programmable macro cells

A programmable interconnection network

Programmable input/outputs

Subparts of a (complex) function are implemented

in macro cells which are then connected to build

the complete function

The IO can be programmed to drive the macro

cell's inputs or to be driven by the macro cell's

outputs

Unlike traditional application-specific integrated

circuit (ASIC), function is specified by the user

after the device is manufactured

Physical structure and programming method is

vendor dependant

2.3 Field Programmable Gate Arrays (FPGAs)

û#ü Christophe Bobda©

Ã Typical organization

1. Symmetrical Array

2 D array of processing elements

(PE) embedded in an interconnection

network

Interconnection points at the

horizontal-vertical intersection

2. Row based

Rows of Processing elements

Horizontal routing via horizontal

channels

Channels divided in segments

Vertical connections via dedicated

vertical tracks (not on the graphic)

2.3 FPGA Structure

Symetrical array

Row-based

û#ü Christophe Bobda©

Ã Typical organization (cont)

3. Sea of gates

2 D array of processing elements

No space left aside the PEs for

routing

Connection is done on a separate

layer on top of the cells

4. Hierarchical

Hierarchically placed Macro cells

Low-level macro cells are grouped

to build the higher-level's PEs

2.3 FPGA Structure

Sea of gates

Hierarchical

û#ü Christophe Bobda©

Ã SRAM (LUT-based)

An SRAM is used to store all possible

values of a function

Value of a function for a given input is

retrieved using the inputs as SRAM-

Address

SRAM implementing a function is

called a look-up table (LUT)

A new function is implemented by

writing new values into the LUT

Ễ SRAM-based FPGA can therefore be

reprogrammed (configured) on the fly

Ễ Since a LUT is volatile, a LUT

configuration is lost when switching

off the system

2.3 FPGA Programming Technologies

û#ü Christophe Bobda©

Ã Anti-fuse
An anti-fused normally presents a high-

impedance state

can be ñfusedò into a low-impedance state

when programmed by a high voltage.

The anti-fuse used in each of FPGAs from

different company differs in construction.

Advantages:

Ễ small area,

Ễ low resistance and parasitic capacitance

than transistors

Ễ reduce delays in the routing.

Drawback: No reprogrammation possible

2.3 FPGA Programming Technologies

û#ü Christophe Bobda©

Ã Poly-diffusion Anti-fuse: ACTEL
PLICE

programmable low-impedance circuit element

Poly-silicon terminal

Oxide-Nitride-Oxide dielectric

Melting the dielectric establish connection

Ã Metal Anti-fuse: Q-Logic Vialink
2 Metal terminal layers (Titanium-Tungsten)

Programming points isolated by amorphous

Silicon film

2.3 FPGA Programming Technologies

û#ü Christophe Bobda©

Ã EEPROM (Flash)
The same technology as that used in

EPROM and EEPROM memories.

Advantages:

EPROMs require re-programmable

but do not require external storage.

EEPROM can be re-programmed in-

circuit.

Drawbacks:

EPROM's resistors consume static

power.

EEPROM requires more chip area

and multiple voltage sources.

2.3 FPGA Programming Technologies

û#ü Christophe Bobda©

LUT
LUT are used as function generators in
SRAM-based FPGA

A k-inputs LUT can implement up to 2 k

different functions

A k-input LUT has 2 k SRAM locations

A function is implemented by writing all
possible values that the function can take
in the LUT

The inputs values are used to address
the LUT and retrieve the value of the
function corresponding the the input
values

a XOR b a b

0 0 0

0 1 1

1 0 1

1 1 0

0
1
1
0

a
b a Xor b

LUT

2.3 FPGA Function generators

û#ü Christophe Bobda©

a XOR b a b

0 0 0

0 1 1

1 0 1

1 1 0

0
1
1
0

a
b a Xor b

LUT

2.3 FPGA Function generators

0 1 1 0

Decoder

SRAM

a

b

A Xor b

û#ü Christophe Bobda©

LUT Example: Implement the
function

using:

2-input LUTs

3-input LUTs

4-input LUTs

AF = ABD + BC BCD +

A
B

D
B

C
D

A

B

C

F

A
B
D

B
C
D

A
B
C

C
D

A
BF F

2.3 FPGA Function generators

û#ü Christophe Bobda©

Multiplexers (MUX)
A 2 kx1 MUX can implement up to 2 k

different functions

A function is implemented by writing all

possible values that the function can take

as constant at the MUX-Inputs

The selector-values are used to pass the

corresponding input to the MUX output

Complex function can be decomposed and

implement using many MUXes using the

Shannon expansion theorem

Y
4 x 1
MUX

s0s1

C0

C1

C2

C3

0

0

0

1

Y s1 s0

0 0 C0

0 1 C1

1 0 C2

1 1 C3

0

0

0

1

=AND

2.3 FPGA Function generators

û#ü Christophe Bobda©

Row-based FPGA

Modules rows separated by

routing channels

MUX-based macro-cells

C-Module

4:1 MUX + 1 OR + 1 AND

S-Module

4:1 MUX + 1 OR + 1 AND

1 Flip Flop

IO placed aside the device

2.3 The Actel ACT3 Family (row-based)

û#ü Christophe Bobda©

Channels are composed of several

segmented routing tracks

Minimum length = module pair width

Maximum length = row width

Long segment if segment width > 3

Connections are anti-fuse based

Horizontal-to-vertical (XF)

Horizontal-to-horizontal (HF)

Vetical-to-vertical (VF)

Fast vertical connection (FF)

Tracks for module inputs are segmented by

pass transistor (inactive during normal

operation)

Vertical inputs span the channels above and

below

2.3 The Actel ACT3 Family (row-based)

û#ü Christophe Bobda©

1. Module outputs have dedicated
channels which extend vertically two
channels above and two channels
below, except at the bottom and the
top

2.3 The Actel ACT3 Family (row-based)

û#ü Christophe Bobda©

Symmetrical-array Based FPGA

Macro cells are configurable

logic block (CLBs), placed on

line column intersection.

Additional modules exist:

Block RAM for internal use

Digital clock manager (DCM) for

user specific clock frequency

generation)

Embedded multiplier (Virtex II or

newer Virtex series)

Global clock Multiplexers

Input output block (IOB) for off-chip

communication

2.3 The Xilinx Virtex Family (symmetrical array)

û#ü Christophe Bobda©

Macro cells are CLBs. A CLB contains
4 identical slices on virtexII and newer
and 2 slices on Virtex and Virtex E

4 slices split in two columns of 2 slices
each

1 slice contains:

2 4-inputs LUT

2 FF for storing LUT results

MUX to feed LUT either to a FF or the

the output

Carry in and carry out help to construct

fast adder circuits using neighbour

CLBs

2.3 The Xilinx Virtex Family (symmetrical array)

û#ü Christophe Bobda©

A CLBs access the general routing matrix
via a switch matrix

Fast connection lines are used for local

connections

A switch matrix connects CLB terminal on

the routing reource using multiplexers

4 horizontal resource per CLB for on-chip

tri-state busses

Each CLB have two tri-state driver (TBUF)

that can drive on chip busses

Each TBUF has its own control pin and its

own input pin

TBUF are AND-OR based, i.e timing is

more predictable.

2.3 The Xilinx Virtex Family (symmetrical array)

û#ü Christophe Bobda©

IOB for off-chip communication

Programmability allows the use of an IOB

by any CLB.

Connection can be input, output or

bidirectional.

6 IOB latched for double data rate (DDR)

transmission.

One of the DDR register can be used on

input, output or tri-state.

DDR accomplished by the two register on

each path clocked by rising or falling edge

from different clock nets.

The two Clock signals are generated by

the DCM.

2.3 The Xilinx Virtex Family (symmetrical array)

û#ü Christophe Bobda©

Sea-of-gates style (sea-of-tiles)

Macro cells are EEPROM based

tiles

Four level of hierarchy routing

resource.

Local resource connects a tile to

one of its 8 neighbours

Long-lines resource provides

routing for long distance and high

fan-out (spanns 1, 2 or 4 tiles).

Runs both horizontal and vertical

Very long-line resource spans the

entire device

Global network (clocks, reset)

Connection via anti-fused

2.3 The Actel ProAsic Family (sea-of-gates)

